An Empirical Study of Active Learning with Support Vector Machines for Japanese Word Segmentation

نویسنده

  • Manabu Sassano
چکیده

We explore how active learning with Support Vector Machines works well for a non-trivial task in natural language processing. We use Japanese word segmentation as a test case. In particular, we discuss how the size of a pool affects the learning curve. It is found that in the early stage of training with a larger pool, more labeled examples are required to achieve a given level of accuracy than those with a smaller pool. In addition, we propose a novel technique to use a large number of unlabeled examples effectively by adding them gradually to a pool. The experimental results show that our technique requires less labeled examples than those with the technique in previous research. To achieve 97.0 % accuracy, the proposed technique needs 59.3 % of labeled examples that are required when using the previous technique and only 17.4 % of labeled examples with random sampling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Multilingual Word Segmentation and Part - of - Speech Tagging : a Machine Learning Approach Incorporating Diverse Features ∗

The aim of this dissertation is to study statistical methods for multilingual word segmentation and POS tagging with high accuracy. Word segmentation and part-of-speech (POS) tagging are fundamental language analysis tasks in natural language processing, and used in many applications. Existence of unknown words is a large problem in these tasks and they need to be properly handled. We attempt t...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

A prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)

Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002